
September 1998 1

 The Front-end ACNet/LabVIEW Interface

Willem Blokland

Fermilab National Accelerator Laboratory
P.O. Box 500, Batavia, Illinois 60510

1. Introduction

This document shows you how to in-
stall and customize the portable ver-
sion of the ACNet/LabVIEW interface.
It is recommended that you use this
version over the previous Macintosh-
only version. The interface enables a
LabVIEW application to communicate
with a control console program using
the ACNet protocol over Ethernet. The
tokenring connections are no longer
supported in this version. You can still
use the older version for this but the
current networking plans do not in-
clude new tokenring wiring (the Main
Injector has no tokenring installed)
and it is likely that tokenring will be
phased out.

The provided functions enable a
console to request single or periodic
multiple replies (RETDAT), as well as to
send settings to change LabVIEW vari-
ables (SETDAT). The interface can also
handle Fast Time Plots (FTPMAN) re-
quests at a rate of 15 Hz by redirecting
FTPMAN requests to the RETDAT task.
The interface can reply up to 200 mes-
sages per second depending on com-
puter system and CPU load from other
programs.

VIs from the TCPORT interface allow
you to read or set any ACNet device in
the control system. This interface is
described in a separate manual.

LabVIEW is a graphical language
complete with analysis library for
processing of signals and interfaces to
many instrument platforms including
VXI. LabVIEW represents a program or

subroutine by an icon called Virtual
Instrument (VI) which has in- and
outputs. The ACNet/LabVIEW Interface
providesVIs that setup the communi-
cation and access the data. In addition,
so-called template VI's demonstrate the
use of the Interface VIs and can be
customized to fit a particular applica-
tion as shown in a demo application.

Additional reading on the AC-
Net/LabVIEW interface can be found in
[1] and for applications [2], [3], and [4].

2. Hardware requirements

The ACNet/LabVIEW Interface runs
on any LabVIEW supported platform.
The computer must have an Ethernet
interface.

3. Installing the ACNet/LabVIEW
Interface files

3.1. New Installation

To run the ACNet Interface for Lab-
VIEW you must install the following
files:

1) The ACNet VI libraries, preferably
in the user.lib folder next to the
LabVIEW application.

2) The ACNet device table. For the Mac
the default is in the in the system
folder:Preferences:Your-Project
Folder. For other platforms you
must define the folder yourself.

3) The file Ac_err.h. This file should
be in the Acnet folder next to Your-
Project folder. (You don't need this

September 17, 1998 2

file to run but it will give you more
explanation in the error messages).

3.2. Upgrading from Macintosh
only version

Because the VIs that read and write
to the Acnet devices have the same
calling interface, you can replace the
old libraries with the new libraries.
When loading your program into Lab-
VIEW make sure LabVIEW finds the
new VIs, it will then automatically re-
place the old VIs with the new VIs. You
will have to modify the initialization
procedure.

1) Remove all installed files as de-
scribed to be installed by the old Lab-
VIEW/ACNet document. (You don’t have
to remove all but you must remove the
ACNet VI library).

2) Keep your device tables as they
are. The new version reads the same
tables.

3) Install the latest version of the
file Ac_err.h. (You don't need this file
to run but it will give you more expla-
nation in the error messages).

4) In your toplevel VI, modify your
initialization setup to conform with the
setup described in Setting up your ap-
plication, and remove the termination
setup.

3.3. Getting ACNet to accept you

To get the ACNet system to accept an
Ethernet connection and the variables
you want to use, take the following,
further detailed below, steps:

1) Make up a 6 letter node name,

2) Get an ACNet UDP node number.

3) Get access to the DABBEL account
and register LabVIEW variables as
ACNet devices .

Make up a node name, e.g. MYNODE,
and have it approved and registered by
the Controls Group (G. Johnson). Also
have ready the IP address of your com-
puter and its Operating System and
mention that it will be an Instrumen-
tation node. Now you must get access to
DABBEL to enter your node and devices
into the General ACNet Database. Again,
ask the Controls Group (G. Johnson) to
enter you as a user of the DABBEL ac-
count.

4. Mapping LabVIEW variables
into ACNet devices

You can make DABBEL entries from
your VAX account. Now you need to
find out how to register your devices
with DABBEL. How to do this is de-
scribed in [5] and [6] obtainable from
the Controls Group. ACNet also provides
scaling services that you must select in
your DABBEL entry, these services and
lots more that you will never want to
know about are described in [7]. In
most cases, you will not have to know
how an DABBEL entry looks like, a
LabVIEW utility will create these en-
tries for you from your device table,
see Appendix A.

An example of a DABBEL entry is as
follows:

!-------------------------------------
! This file adds a device for the -
! node INST01, a Mac IIci, to the -
! data base. -
!-------------------------------------
ADD T:BLTVX1 ('Beamline Tuner',INST01)
SSDNHX READNG (0000/0002/0000/0000)
SSDNHX SETTNG (0000/0003/0000/0000)
PRO READNG (2,2,60)
PRO SETTNG (2,2,60)
PDB READNG ('VOLT','BLOK',10,0,2,0,1,0)
PDB SETTNG ('VOLT','BLOK',10,0,2,0,1,0)
! NULL FLTD, X'=X,2 BYTES, INT FORMAT,
! LONG DISPLAY, ADC

A device called T:BLTVX1 with the
name ‘Beamline Tuner’ and residing
on node INST01 is added to the database.
Two properties are registered, one for
reading, READNG, and one for writing,

September 17, 1998 3

SETTNG. The first property has as SSDN,
SubSystem Device Number,
0000/0002/0000/0000. The ACNet func-
tions implemented in LabVIEW will
only look at the first two fields,
0000/0002 to identify and ACNet vari-
able. This two word long hexadecimal
will be interpreted as a unsigned long
integer of value 2 and identifies an
ACNet variable in LabVIEW. This is the
SSDN number you use to register your
variable, see the section on initializa-
tion. In LabVIEW, the two properties of
the same ACNet device are seen as two
different variables as long as they
have two different SSDNs. While the
ACNet/LabVIEW Interface allows
writing and reading to both variables,
an ACNet application, such as the pa-
rameter page on the console, allows
only the setting of the SETTNG prop-
erty. To be able to use the console to
read and write the same variable, give
the two properties the same SSDN. The
next two words of the SSDN field can be
used for offset in case the variable is
an array, see appendix A.

The next two lines assign to each of
the properties/variables an element
size of two bytes and an array size of 2
bytes (one element) as well as a Fre-
quency Time Descriptor of 60 (send an
update of the value each 60/60 sec-
onds). Note that the SETTNG property is
also read every second. The last two
lines declare the units, notation, dis-
play type and which ACNet scaling
services are to be applied. The DABBEL
file can be automatically generated
using a general spreadsheet file that is
also used to initialize the AC-
Net/LabVIEW interface, see
"Initializing your application" in the
next chapter.

5. ACNet/LabVIEW Interface ba-
sics

5.1. The main VI

The LabVIEW interface to ACNet is
built around the dBase VI, see figure 1.

Figure 1. The dBase VI.

The dBase Vi functions as a database
for variable values that must be acces-
sible from both LabVIEW and ACNet.
Both sides can read and write values.
The dBase VI also logs who accessed at
what time. This supports the ACNet re-
quests GTSKID, GTSKNM, GTVERS,
GTASKS, GTCNTS, GTSTAT, GTTKST,
GTTRIO, and GTPKTS. On the LabVIEW
side the VI Ac Statistics can display
similar statistics, see section on Ac Sta-
tistics.

5.2. Network Access

The ACNet functions communicate
directly to LabVIEW. The requests are
distributed to the appropriate VIs, one
for each task: ACNET, FTPMAN, RETDAT,
and SETDAT. Each of these VIs calls the
dBase VI for access to the ACNet devices
or statistics.

5.3. LabVIEW Access

Because the dBase VI only takes data
in the format of the unsigned byte ar-
ray type, additional VI's, with the
naming convention Ac_Read_XXX or
Ac_Write_XXX, are available that pro-
vide read and write access for specific
types of variables.

The XXX specifies the type of vari-
able in question:

1) 'U16': unsigned short integer,

2) 'I16': signed short integer,

3) 'U32': unsigned long integer,

4) 'I32': signed long integer,

5) 'Dbl': double float, 64-bit IEEE format,

September 17, 1998 4

6) 'Sgl': single float, 32-bit IEEE format,

7) 'Ext': Extended float, 96-bit MC68882
format,

8) 'Str': String format, defined as array
of bytes and must be null termi-
nated.

Figure 2. The Ac_Write_U16 VI.

An example of such an access Vi is
given in figure 2. Variable access VI
are also available for array variables,
see figure 3.

Figure 3. The Ac_Write_SglArr VI.

For easy access to LabVIEW vari-
ables from the parameter page of a
control console use table 1 to match up
a LabVIEW variable type with a spe-
cific ACNet scaling service transfor-
mation. This table is also used by the VI

that automatically generates the
DABBEL file.

Table 1. Matching of formats.

LabVIEW Transformation
Index

Sgl 24
U16 20
I16,I32 10

5.4. Error Logging

Errors occur if the requested action
cannot be completed. For example, a
data request with an SSDN number that
is not registered.

1) Interactive. A dialog window is
opened, giving the user the option
to exit the application or continue.
The program will not continue until
a button is clicked. See figure 4.

2) Automatic. A window is opened at
initialization and any error mes-
sages are displayed inside this win-
dow, no interaction of the user is
required. This window also print
progress information during
startup. This option is useful for
remote application where no user is
present and possible errors in
writing or reading of data are not
fatal to the program. See figure 5.

Figure 4. The Dialog error Message.

September 17, 1998 5

Figure 5. The Error Log

A short explanation is added to the
error code if at initialization the VI
Ac_InitErrorCodes is executed. This VI
reads the Ac_err.h file to associate
each error code with a short explana-
tion. The file must be present in the
ACNet folder in the Preferences folder.
The statistics panel, described later, in-
cludes an on-line view of the current
status of the Acnet Interface.

6. Setting up your application

A set of template VIs is available that
demonstrate the use of the AC-
Net/LabVIEW interface. These VIs can
be customized to fit your application
needs. The toplevel VI is the Ac Demo.
This VI includes all other template VIs
and can be used to encapsulate your

application. The demo also includes the
TCPORT interface, see TCPORT manual.

6.1. Initializing your application

The ACNet interface must be ini-
tialized before and properly terminated
after use. The initialization consists of
the following actions:

1) Opening a UDP port,

2) Registration of the ACNet accessible
variables, see Appendix A,

3) Optional loading of error code file,
and

4) Initialization of the ACNet variables
and your application (if needed).

September 17, 1998 6

Initialization of Acnet

DemoName of Project

Do Init Devices

Add your own application
initialization here, if needed

Acnet.devicesDevice Table

Mode of Error Log Save

Preferences

Folder

Initialize

Don't continue

path to device
table

1

2

3

4

5

6

 0 [0..2]

Figure 6. Initialization of ACNet

Figure 6 shows an example of how
the initialization is done.

1) Give a path for the device table to
use.

2) Say whether you want the devices to
be initialized according to the de-
vice table.

3) Give the Initialize command to the
Acnet interface.

4) Specify error log display

5) Specify a non-continue. This will
initialize Acnet but will not allow
communication until you have ini-
tialize your application.

6) Add the initialization, if you have
one, of your application.

September 17, 1998 7

 0 [0..1]

Application Loop

Loops for User app, TCPORT, and Acnet

TCPORTInterface

Start

cfss.fnal.gov

Acnet Interface

Run

1

2 3

 1 [0..2]

6.1.1.

Figure 7. Running your application.

6.2. Running your application

Figure 7 shows the second frame of the
Acnet Demo VI containing a while
loops (1) for your application VI, the
TCPORT Interface (2) which has its own
internal while loop, and the Acnet in-
terface VI (3) which also has its own
while loop. All loops should terminate
when Loop Control global is set to
false. Your application should have a
stop button which will set this global to
false. LabVIEW executes all loops, or
any other added, in parallel so that
your program, the Acnet interface and
if included the TCPORT interface all
run at the same time. Remember to add
the Wait ms VI to each loop to prevent
it from hogging all the CPU time. (Note
that different platforms have different
threading capabilities that can assist
you in setting up the time-slicing. See
the LabVIEW users manual for details)

6.3. The Interface Statistics

The display of the statistics panel is
shown in figure 8. The statistics page
allows you to see information about the
ACNet interface:

1) Time: The current time in millisec-
onds

2) Timers: List of active timers, each
entry has the next wakeup time, pe-
riod and number of elements using
the timer.

3) Active Requests: Lists the current
periodic requests: Acnet Header,
Drb Header, drb blocks, and Net-
work information about requester
and used port.

4) Device Statistics: Table of the Acnet
devices that are currently regis-
tered. The columns have the device
name, SSDN, Variable Type, Size
(bytes), Reads Local, Sets Local,
Reads over Network (Acnet), Sets

September 17, 1998 8

over Network, and time stamp of last
write.

5) Task Statistics: List of each regis-
tered task with the number of: Info
(not used), Multiple reply request
with Periods, Single reply request
with Periods, Multiple reply request
on Event, Single reply request on
Event, Cancellation requests, Er-
rors, USM received, Requests re-

ceived, Replies received, USM
transmitted, Requests transmitted,
Replies transmitted.

6) Boot: Dat and time of booting the in-
terface.

7) Version: Software version.

The requests are organized by FTD
value (each FTD value gets its own
timer).

2988886570860wakeup

2000.00period

10Elements

1

Timers

0ms_sta
101ms_ctl
0ms_err
40Ams_dstnod

1B09ms_srcnod

715C193Cms_tskna
m[4] 0ms_id

2ms_seq
16385ms_stamp
50ms_size

Acnet Header

32replyln
6entries
3Cftd

Drb Header

1ssdn[0]
88120C01PDIndex

4size

0offset

0ssdn[1]

drb0

DRB
array

2212592667Address

6801Port

Network

RETDATTask

0

0

Active Requests
2988886568915

Current Time in msec

Device SSDN Var TypeSize Reads L Sets L Reads N Sets N Last write

T:DEMRAT 1 I32 4 551 1 998 0 9/17/98_8:55:36

T:DEMSTP 2 I16 2 17081 552 998 0 9/17/98_9:15:59

T:DEMVAL 3 Sgl 4 0 552 998 0 9/17/98_9:15:59

T:DEM 4 Sgl 16000 0 3 250 0 9/17/98_8:55:37

T:DEMSTR 6 Str 256 0 1 250 0 9/17/98_8:55:37

T:DEMTMP 7 Sgl 4 0 1 0 0 9/17/98_8:55:37

Device Statistics

Task Info P/S P/M E/S E/M CAN Err USM REQ RPY USMx REQx RPYx

ACNET 0 0 0 0 0 0 0 0 9 0 0 0 9

RETDAT 0 0 4 0 0 2 0 2 4 0 0 0 749

SETDAT 0 0 0 0 0 0 0 0 0 0 0 0 0

FTPMAN 0 0 0 0 0 0 0 0 0 0 0 0 0

Task Statistics

9/17/98 8:55:37 Boot

timer
msg

6

5

4

321

AcnetClient 1.0.0Version7

Figure 9. The Statistics panel.

 6. 4. Terminating your applica-
tion

The ACNet functions are terminated
by setting the Loop Control global to
false. In the third frame of the Acnet
Demo VI is space to place your VI for
exiting instruments or cleaning up
any data structures.

7. References

[1] W. Blokland, "An Interface from
LabVIEW to the Accelerator Controls
Network," Conf. Proc. of the Accel.
Instr. Third Annual Workshop, LBL,
Berkeley, 1992.

[2] W. Blokland, "A VXI/LabVIEW-based
Beamline Tuner." PAC 93.

[3] A. A. Hahn and P. Hurh, "Results
from a Imaging Beam Monitor in the
Tevatron using Synchrotron Light",
presented at the XVth Int'l Conf. on

September 17, 1998 9

High Energy Accel., Hamburg, Ger-
many, 1991.

[4] W. Blokland, ‘Integrating the com-
mercial software package LabVIEW
with Fermilab’s Accelerator Control
NETwork’, ICALEPS 95, pp. 226-234,
Oct. 29 - Nov. 3, Chicago, USA.

[5] G. C Johnson, "Using the DABBEL
Turnkey Account." Controls Software
Release No. 120.0. Fermilab, Batavia
IL, November 7 1983.

[6] S. Sommers, "DABBEL (DataBase
Batch Editing Language)." Controls
Software Release No. 119.1. Fermilab,
Batavia IL, April 10 1984.

[7] K. Cahill et. al, "ACNet Data Acquisi-
tion, Scaling and Data-base Services."
ACNET Design Note 22.28, Fermilab,
Batavia IL, December 6 1985.

September 17, 1998 10

8. APPENDIX A: Automatic Regis-
tration of ACNet devices in LabVIEW

8.1. The Device Table
Information about the ACNet de-

vices should be presented in a table
format as made by spreadsheet pro-
grams such as Excel or word processors

such as Word. The final version of the
table should be saved as a text file in
which the elements of a row are sepa-
rated by tabs and the row is ended by a
carriage return. The file should be lo-
cated in the Preferences:YourProject:
folder of the System Folder. An example
is given below in Table A1.

Table A1. An example of ACNet device entries.

The first two rows contain in-
formation other than device entries.
The first row should contain the date
that the table was created, the project
name, and the version number. The
next row contains the headers to iden-
tify each column. All following rows
must contain information about the
devices. The elements must be as fol-
lows:

Device name : The ACNet device name
with optional format string for use
with indexing.

SSDN# : The SubSystem Device Number
with optional index number,
[number], or index range,
[number1-number2] number2 >
number1. Both the SSDN and the
index are numbers from 0 to 32768
(215). The SSDN identifies the Lab-
VIEW variable, the index the offset
(in elements) in the array if the
variable is an array device. An '@'
can be postfixed to SSDN entry
without additional indices to indi-

cated to not generate a DABBEL
entry for this device entry.

Read/Write : The ACNet device prop-
erty. Values are: R for ACNet read
access, W for write access and RW
for both accesses.

Var type : The variable type as defined
in the "Accessing ACNet variables"
section.

Bytes/elem : The number of bytes per
element.

Elem/device : The number of ele-
ments per device.

Initial value : The initial value of the
LabVIEW variable can be a number
or a string. In the case that the
variable is an array, the whole ar-
ray is initialized with this value.
Entries that are DABBEL aliases are
not used to initialize devices in the
labVIEW program.

Update rate : The Update rate (the
Frequency Time Descriptor). The
rate in seconds is the Update rate
divided by 60.

September 17, 1998 11

Prim unit : Primary unit used for pa-
rameter page display. Four letters
maximum, no commas or quotes.

Com unit : Common unit used for pa-
rameter page display. Four letters
maximum, no commas or quotes.

Long/Short : Notation length of value
on parameter page: LONG or SHORT.

Notation : Scientific or decimal nota-
tion of value on parameter page:
DEC or SCI.

Description : Description of value for
parameter page with optional for-
mat string for use with indexing.
Maximum of 24 characters after
formatting.

Device names with indexing (called
an alias device), e.g. T:DEM1, will not
lead to the creation of a new LabVIEW
variable. These devices are solely for
console display purposes to define a
scalar device entry from an array de-
vice or to split a very large array into
two or more smaller entries to bypass
Acnet's size limititations. Since Lab-
VIEW has no trouble accessing large
array, it will ignore the DABBEL alias

device entries and thus ignore the
inital values of these entries. When
splitting large arrays in pieces, you
must first define the device for the
LabVIEW program, if you don't want
this to generate a DABBEL entry then
postfix it with a '@', see the example ta-
ble.

8.2. Generation of the DABBEL
File

The DABBEL file is generated by the
LabVIEW VI Ac MakeDabbel. This VI
converts the device table to a DABBEL
file. You must also declare the Node
name, e.g. INST08, on which the ACNet
devices will be located. Additionally,
you must indicate whether you are
adding or modifying ACNet devices.
Running the VI will produce the
DABBEL text file, This file must then be
copied to the DABBEL host computer
and run through the DABBEL program
to add the ACNet devices into the con-
trol systems database.

Node

Project Date Version

ADD

Action
6

Entries

Acnet.devices

Device Table

Figure A1. The Ac MakeDabbel VI.

If the declared device has an index
or a range of indices then this single
table entry will generate a DABBEL de-
vice entry for each number. For exam-

ple, an SSDN of 200[1-9] will generate 9
devices with SSDN 200 and an index
from 1 to 9 inclusive. In the same row,
one can refer to the index using a for-

September 17, 1998 12

mat string comparable to a printf
statement in the C language. For exam-
ple, the device name T:ARR%O2d will be
formatted as a three digit, left zero-
padded number to T:ARR01, T:ARR02,
...., T:ARR09. Any format statement will
be expanded with the value of the in-
dex. This means that the descriptive
text is also formatted to
Alias1],.....,Alias[9]. See the next page
for the generated file. Note that in the
SSDNHX line the SSDN is in the second
field while the fourth field contains
the hexadecimal offset in bytes into the
array. In the case, of T:ARR04 this be-
comes: index* element_size equals 4* 2 =
0x0008.

! FILE : Blok:Desktop Folder:Demo.dab
! FROM : 3/27/97 Example V 2.0 W. Blokland
! Created by LV converter 3.1

ADD T:SCALAR ('Scalar device', MYNODE)
SSDNHX READNG (0000/0001/0000/0000)
SSDNHX SETTNG (0000/0001/0000/0000)
PRO READNG (4,4,60)
PRO SETTNG (4,4,60)
PDB READNG ('mVlt','DegC',24,0,4,0,0,0)
PDB SETTNG ('mVlt','DegC',24,0,4,0,0,0)

ADD T:ARRAY ('Array device', MYNODE)
SSDNHX READNG (0000/0002/0000/0000)
SSDNHX SETTNG (0000/0002/0000/0000)
PRO READNG (4,400,120)
PRO SETTNG (4,400,120)
PDB READNG ('mm','mm',24,0,4,0,0,0)
PDB SETTNG ('mm','mm',24,0,4,0,0,0)

ADD T:ALIAS1 ('First alias for Acnet', MYNODE)
SSDNHX READNG (0000/0064/0000/0000)
SSDNHX SETTNG (0000/0064/0000/0000)
PRO READNG (4,8000,60)
PRO SETTNG (4,8000,60)
PDB READNG ('Volt','Volt',10,0,4,0,0,0)
PDB SETTNG ('Volt','Volt',10,0,4,0,0,0)

ADD T:ALIAS2 ('Second alias for Acnet',
MYNODE)

SSDNHX READNG (0000/0064/0000/1F40)
PRO READNG (4,8000,60)
PDB READNG ('Volt','Volt',10,0,4,0,0,0)

ADD T:ARR ('Full array for LabVIEW',
MYNODE)

SSDNHX READNG (0000/00C8/0000/0000)
PRO READNG (2,20,60)
PDB READNG ('amps','amps',10,0,2,0,0,0)

ADD T:ARR01 ('Alias[1] for Acnet', MYNODE)
SSDNHX READNG (0000/00C8/0000/0002)
PRO READNG (2,2,60)

PDB READNG ('amps','amps',10,0,2,0,0,0)

ADD T:ARR02 ('Alias[2] for Acnet', MYNODE)
SSDNHX READNG (0000/00C8/0000/0004)
PRO READNG (2,2,60)
PDB READNG ('amps','amps',10,0,2,0,0,0)

ADD T:ARR03 ('Alias[3] for Acnet', MYNODE)
SSDNHX READNG (0000/00C8/0000/0006)
PRO READNG (2,2,60)
PDB READNG ('amps','amps',10,0,2,0,0,0)

ADD T:ARR04 ('Alias[4] for Acnet', MYNODE)
SSDNHX READNG (0000/00C8/0000/0008)
PRO READNG (2,2,60)
PDB READNG ('amps','amps',10,0,2,0,0,0)

ADD T:ARR05 ('Alias[5] for Acnet', MYNODE)
SSDNHX READNG (0000/00C8/0000/000A)
PRO READNG (2,2,60)
PDB READNG ('amps','amps',10,0,2,0,0,0)

ADD T:ARR06 ('Alias[6] for Acnet', MYNODE)
SSDNHX READNG (0000/00C8/0000/000C)
PRO READNG (2,2,60)
PDB READNG ('amps','amps',10,0,2,0,0,0)

ADD T:ARR07 ('Alias[7] for Acnet', MYNODE)
SSDNHX READNG (0000/00C8/0000/000E)
PRO READNG (2,2,60)
PDB READNG ('amps','amps',10,0,2,0,0,0)

ADD T:ARR08 ('Alias[8] for Acnet', MYNODE)
SSDNHX READNG (0000/00C8/0000/0010)
PRO READNG (2,2,60)
PDB READNG ('amps','amps',10,0,2,0,0,0)

ADD T:ARR09 ('Alias[9] for Acnet', MYNODE)
SSDNHX READNG (0000/00C8/0000/0012)
PRO READNG (2,2,60)
PDB READNG ('amps','amps',10,0,2,0,0,0)

